AESOP home

Publications

Performance-energy trade-offs in smartphones

Tiberiu Chis, Peter G. Harrison

Conference or Workshop Paper
The 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM 2016)
2016
ACM Digital Library
Abstract

In the literature, numerous works have modeled user activity on smartphones and the effects on battery life. Power-saving modes prolong battery life by saving energy, but application performance is limited as a result. We investigate performance-energy trade-offs of smartphone applications by investigating three strategies: first, we propose an M/M/1 discriminatory processor sharing queue to act as a smartphone server and measure delays of Android applications; secondly, we form a performance-energy trade-off that takes into account cellular radio transfers using an objective cost function incorporating mean delay and power consumption; and thirdly, we build an online HMM to act as a power consumption model that predicts battery life given recent data transfers. For all three strategies, we obtain logged smartphone activity of over 750 users via an open-source smartphone data-collection application. Hence, we obtain three hypotheses from our strategies: first, delay of applications is approximated well using the beta prime distribution; secondly, power consumption increases as mean delay decreases with battery life prolonged if adjustments are made to cellular radio usage; and thirdly, burstiness is captured by HMMs in both data transfers and rates of power consumption.

Information from pubs.doc.ic.ac.uk/tibMswim.